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Multinomial Distribution

Say you perform n independent trials of an experiment where each trial results in one of m outcomes, with
respective probabilities: p1, p2, . . . , pm (constrained so that ∑i pi = 1). Define Xi to be the number of trials
with outcome i. A multinomial distribution is a closed form function that answers the question: What is the
probability that there are ci trials with outcome i. Mathematically:

P(X1 = c1,X2 = c2, . . . ,Xm = cm) =
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)
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Example 1

A 6-sided die is rolled 7 times. What is the probability that you roll: 1 one, 1 two, 0 threes, 2 fours, 0 fives, 3
sixes (disregarding order).

P(X1 = 1,X2 = 1,X3 = 0,X4 = 2,X5 = 0,X6 = 3) =
7!
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Expectation with Multiple RVs

Expectation over a joint isn’t nicely defined because it is not clear how to compose the multiple variables.
However, expectations over functions of random variables (for example sums or multiplications) are nicely
defined: E[g(X ,Y )] = ∑x,y g(x,y)p(x,y) for any function g(X ,Y ). When you expand that result for the func-
tion g(X ,Y ) = X +Y you get a beautiful result:

E[X +Y ] = E[g(X ,Y )] = ∑
x,y

g(x,y)p(x,y) = ∑
x,y
[x+ y]p(x,y)

= ∑
x,y

xp(x,y)+∑
x,y

yp(x,y)

= ∑
x

x∑
y

p(x,y)+∑
y

y∑
x

p(x,y)

= ∑
x

xp(x)+∑
y

yp(y)

= E[X ]+E[Y ]

This can be generalized to multiple variables:

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi]

Independence with Multiple RVs

Discrete

Two discrete random variables X and Y are called independent if:

P(X = x,Y = y) = P(X = x)P(Y = y) for all x,y



Intuitively: knowing the value of X tells us nothing about the distribution of Y . If two variables are not
independent, they are called dependent. This is a similar conceptually to independent events, but we are
dealing with multiple variables. Make sure to keep your events and variables distinct.

Continuous

Two continuous random variables X and Y are called independent if:

P(X ≤ a,Y ≤ b) = P(X ≤ a)P(Y ≤ b) for all a,b

This can be stated equivalently as:

FX ,Y (a,b) = FX (a)FY (b) for all a,b

fX ,Y (a,b) = fX (a) fY (b) for all a,b

More generally, if you can factor the joint density function then your continuous random variable are inde-
pendent:

fX ,Y (x,y) = h(x)g(y) where −∞ < x,y < ∞

Example 2

Let N be the # of requests to a web server/day and that N ∼ Poi(λ ). Each request comes from a human
(probability = p) or from a “bot” (probability = (1–p)), independently. Define X to be the # of requests from
humans/day and Y to be the # of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of requests
is a Binomial. Specifically:

(X |N)∼ Bin(N, p)

(Y |N)∼ Bin(N,1− p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding using the
chain rule:

P(X = i,Y = j) = P(X = i,Y = j|X +Y = i+ j)P(X +Y = i+ j)

We can calculate each term in this expression:

P(X = i,Y = j|X +Y = i+ j) =
(

i+ j
i

)
pi(1− p) j

P(X +Y = i+ j) = e−λ λ i+ j

(i+ j)!

Now we can put those together and simplify:

P(X = i,Y = j) =
(

i+ j
i

)
pi(1− p) je−λ λ i+ j

(i+ j)!

As an exercise you can simplify this expression into two independent Poisson distributions.

Symmetry of Independence

Independence is symmetric. That means that if random variables X and Y are independent, X is independent
of Y and Y is independent of X . This claim may seem meaningless but it can be very useful. Imagine a
sequence of events X1,X2, . . . . Let Ai be the event that Xi is a “record value” (eg it is larger than all previous
values). Is An+1 independent of An? It is easier to answer that An is independent of An+1. By symmetry of
independence both claims must be true.
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