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Properties of Joint Distributions

Multinomial Distribution

Say you perform n independent trials of an experiment where each trial results in one of m outcomes, with
respective probabilities: pi, pa,..., pm (constrained so that }; p; = 1). Define X; to be the number of trials
with outcome i. A multinomial distribution is a closed form function that answers the question: What is the
probability that there are c; trials with outcome i. Mathematically:
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Example 1

A 6-sided die is rolled 7 times. What is the probability that you roll: 1 one, 1 two, O threes, 2 fours, O fives, 3
sixes (disregarding order).
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Expectation with Multiple RVs

Expectation over a joint isn’t nicely defined because it is not clear how to compose the multiple variables.
However, expectations over functions of random variables (for example sums or multiplications) are nicely
defined: E[g(X,Y)] = Y., &(x,y)p(x,y) for any function g(X,Y). When you expand that result for the func-
tion g(X,Y) = X +Y you get a beautiful result:
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This can be generalized to multiple variables:
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Independence with Multiple RVs

Discrete

Two discrete random variables X and Y are called independent if:

PX =x,Y =y)=P(X =x)P(Y =y) for all x,y



Intuitively: knowing the value of X tells us nothing about the distribution of Y. If two variables are not
independent, they are called dependent. This is a similar conceptually to independent events, but we are
dealing with multiple variables. Make sure to keep your events and variables distinct.

Continuous

Two continuous random variables X and Y are called independent if:
PX <a,Y <b)=P(X <a)P(Y <b) forall a,b

This can be stated equivalently as:

FX,Y (a,b) = FX (a)Fy (b) for all a,b
fxy(a,b) = fx(a)fy(b) forall a,b

More generally, if you can factor the joint density function then your continuous random variable are inde-
pendent:

Jxy (x,y) = h(x)g(y) where —eo <x,y <o

Example 2

Let N be the # of requests to a web server/day and that N ~ Poi(A). Each request comes from a human
(probability = p) or from a “bot” (probability = (1-p)), independently. Define X to be the # of requests from
humans/day and Y to be the # of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of requests
is a Binomial. Specifically:

(X|N) ~ Bin(N, p)
(Y|N) ~ Bin(N,1 —p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding using the
chain rule:

PX=iY=j)=PX=iY=jIX4+Y =i+ j)PX+Y =i+))

We can calculate each term in this expression:
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Now we can put those together and simplify:

PX+Y=i+j)=e
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As an exercise you can simplify this expression into two independent Poisson distributions.

P(X=iY=j)= (itj>p’(l—p)’e‘

Symmetry of Independence

Independence is symmetric. That means that if random variables X and Y are independent, X is independent
of Y and Y is independent of X. This claim may seem meaningless but it can be very useful. Imagine a
sequence of events X1,X>,.... Let A; be the event that X; is a “record value” (eg it is larger than all previous
values). Is A, independent of A,? It is easier to answer that A, is independent of A, ;. By symmetry of
independence both claims must be true.



